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Abstract

In air traffic management systems, a conflict prevention system examines the traffic
and provides ranges of guidance maneuvers that avoid conflicts. This guidance takes
the form of ranges of track angles, vertical speeds, or ground speeds. These ranges
may be assembled into prevention bands: maneuvers that should not be taken. Un-
like conflict resolution systems, which presume that the aircraft already has a con-
flict, conflict prevention systems show conflicts for all maneuvers. Without conflict
prevention information, a pilot might perform a maneuver that causes a near-term
conflict. Because near-term conflicts can lead to safety concerns, strong verification
of correct operation is required. This paper presents a mathematical framework to
analyze the correctness of algorithms that produce conflict prevention information.
This paper examines multiple mathematical approaches: iterative, vector algebraic,
and trigonometric. The correctness theories are structured first to analyze conflict
prevention information for all aircraft. Next, these theories are augmented to con-
sider aircraft which will create a conflict within a given lookahead time. Certain
key functions for a candidate algorithm, which satisfy this mathematical basis are
presented; however, the proof that a full algorithm using these functions completely
satisfies the definition of safety is not provided.
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this work as a staff scientist at the National Institute for Aerospace in Hampton,
Virginia.
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1 Introduction

Many tools have been proposed to help aircraft maintain separation standards. At
the lowest level, algorithms are developed that detect situations where separation
standards will be violated in the near future (called a conflict). Once a conflict is
detected, then a conflict resolution algorithm can be applied to create a new path in
which there is no conflict. Both conflict detection and resolution algorithms usually
work in a pair-wise fashion: the ownship aircraft and one other aircraft. In situations
where traffic density is low, this pair-wise assumption does not significantly impact
operations. However, when traffic density is high, resolving one conflict may result
in new near-term conflicts—called secondary conflicts. These secondary conflicts
may be nearer (in time) than the original conflict being addressed; so, the safety
of the aircraft depends on avoiding these conflicts. More generally, any time an
aircraft maneuvers there is the potential to create new conflicts, which must be
avoided both for safety and efficiency. This conflict prevention information allows
the pilot to perform conflict-free maneuvering.

Avoiding potential conflicts involves analyzing possible maneuvers of the aircraft.
There are two basic approaches to tactical1 airborne conflict prevention: probing
and bands. In the maneuver probing approach, the pilot or controller provides an
individual maneuver, which is tested to ensure the proposed trajectory is conflict-
free. In the bands approach, large groups of possible maneuvers are analyzed and
the pilot is presented with ranges of track angles, ground speeds, or vertical speeds,
which, if taken, will result in conflict-free trajectories. Alternatively, these ranges
could represent avoidance or “don’t go” zones. These ranges of guidance maneu-
vers are referred to as conflict-prevention information. This information may be
used for probing, bands, or even future highly-automated approaches. The National
Aerospace Laboratory (NLR) refers to their conflict prevention capability as Pre-
dictive Airborne Separation Assurance System or Predictive ASAS [5]. The NLR
approach provides two sets of bands: near-term conflicts (within 3 minutes) are
shown in red, while intermediate-term conflicts (within 5 minutes) are shown in
amber as illustrated in figure 1. We do not directly analyze the NLR system, but
we do use it for the definition of the algorithm’s input and output and also as a
prototype of a conflict prevention system’s behavior.

Given the near-term nature of these conflicts, it is critical that systems pro-
vide correct conflict-prevention information. The correctness of these solutions is
established through a mathematical characterization and analysis of the conflict-
free regions for vertical speed, ground speed and track angles changes. Most of the
theory presented in this paper has been formalized and verified in the Prototype
Verification System (PVS) [7]. We present the theorems and proofs in standard
notation to make them accessible to a wider audience. The PVS theories and proofs
are available at the web site. 2

In addition to a general mathematical framework for the analysis of conflict

1We use the term tactical to mean a system which only uses near-term predictions of aircraft
behavior without incorporating pilot or controller intent.

2http://research.nianet.org/fm-at-nia/ACCoRD/
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Figure 1. Compass Rose with Conflict Prevention Bands

prevention information, we present candidate algorithms for vertical speed, ground
speed, and track angle bands, along with preliminary mathematical analysis of these
approaches.

Although conflict-prevention systems have been used in several human-in-the-
loop simulation experiments [1, 2, 6] and their functionality has been described in
other papers [5,8], we believe this is the first published analysis of such information.
The primary focus of this work has been conflict-prevention systems for airborne
operation, but there is nothing inherent in this approach which precludes use in
ground-based systems.

2 Iterative Solution

The formally-verified conflict detection and resolution algorithm KB3D [3] contains a
conflict probe called CD3D (the CD3D algorithm is described in appendix A). Using
this conflict probe, one can develop a simple iterative algorithm to compute preven-
tion bands. For example, the track angle algorithm could be as shown in figure 2.
Similar iterative algorithms could be developed for the vertical speed and ground
speed guidance maneuvers.

The CD3D algorithm has been formally proven correct and complete, i.e., the
function CD3D returns the Boolean value TRUE if and only if there is a predicted loss
of separation. However, the correctness and completeness of CD3D does not imply
the correctness nor the completeness of this simple iterative algorithm. Indeed, for
any given step size, there are track angles that should be colored red or yellow that
are missed. Conversely, not all the angles in a red or yellow band necessarily indicate
a predicted loss of separation. To minimize this problem, the track step may be set
to a very small angle. However, in that case, the efficiency of the algorithm suffers
due to the large number of points to be checked. For these reasons, we seek an
analytical approach that precisely computes the complete set of preventions bands.

2



input: ownship state,

list of traffic aircraft,
minimum horizontal separation D,

minimum vertical separation H,

track discretization step

Track = 0;

while Track < 360 do
DisplayColor = green

NewOwnship.position = Ownship.position

NewOwnship.velocity = compute new velocity vector which has
the magnitude of ‘Ownship.velocity’ and

points in the direction of ‘Track’

for each traffic aircraft, Traffic:

RelativePosition = NewOwnship.position - Traffic.position

RelativeVelocity = NewOwnship.velocity - Traffic.velocity

if CD3D(RelativePosition, RelativeVelocity, D, H, 3)
then DisplayColor = red

else if CD3D(RelativePosition, RelativeVelocity, D, H, 5)
then DisplayColor = amber

end if

draw point on compass at angle ‘Track’ with color ‘DisplayColor’

Track = Track + step

end while

Figure 2. Track Angle Iterative Algorithm
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3 Problem Assessment

Each aircraft’s contribution to the prevention band is independent of all other traffic;
thus, the problem neatly divides into a series of aircraft pairs: the ownship and each
traffic aircraft. The conflict-free regions for each aircraft may then be merged into
an overall picture of the airspace around the ownship. Analysis of the algorithm to
merge bands is left for future work.

3.1 Modeling Considerations

Throughout this paper, we use the following notation to represent the pair of aircraft.

so 3D vector initial position of the ownship aircraft
vo 3D vector initial velocity of the ownship aircraft
sz 3D vector initial position of the traffic aircraft
vz 3D vector initial velocity of the traffic aircraft

The components of each vector are scalar values, so they are represented without the
bold-face font, for example so = (soX, soy, soz). As typical of state-based approaches,
speeds are presumed to be ground-relative. The use of ground speed was chosen
to correspond to position and velocity reports coming from Automated Dependent
Surveillance (ADS-B) systems. The impact of differences between ground speed and
air speed is left for future work. As a simplifying assumption, we regard the position
and velocity vectors as accurate and without error. For notational convenience, we
use v2 = v • v.

In the airspace system, the separation criteria are specified as a minimum hori-
zontal separation D and a minimum vertical separation H (in much of the airspace
D is 5 nautical miles and H is 1000 feet). It is convenient to develop the theory using
a translated coordinate system. The relative position s is defined to be s = so — s z

and relative velocity of the ownship with respect to the traffic aircraft is denoted
by v. With these vectors the traffic aircraft is at the center of the coordinate sys-
tem and does not move. For example in figure 3, the blue (upper) dot represents
the ownship with its velocity vector and the magenta vector (lower) is the velocity
vector of the traffic. In the translated coordinate system, these vectors combine to
form a single relative vector, also shown in blue in figure 3. The separation criteria
defines a cylinder of radius D and half-height H around the traffic aircraft. This
cylinder is called the protected zone.

In figure 3, the green vectors show possible resolution vectors. In this figure,
there is a horizontal conflict because the relative velocity vector (blue) defines a
half-line that intersects the protected zone, meaning that in some future time the
ownship will enter the protected zone around the traffic. More formally, a horizontal
conflict occurs if there exists a future time t where the aircraft positions so + tvo and
s z + tvz are within a horizontal distance D of each other. In the relative coordinate
system, we define

Definition 3.1 (horizontal conflict?).

horizontal conflict? (s , v) - ] t > 0 : (s + tv) 2 < D2 ,	 (1)

4



Figure 3. Translated Coordinate System

where s and v are, respectively, the projections on the horizontal plane of the relative
position and velocity vectors of the ownship with respect to the traffic.

In this definition, we model future aircraft positions as a linear projection of
the aircraft’s velocity from its current position. An aircraft’s acceleration—both
positional and angular—are not modeled. It is easy to show that horizontal
conflict? precisely defines a minimum separation D between the points so + tvo

and si + tvi :

( (sox + voxt) — (s ix + vix t ) ) 2 + ((soy + voy t) — (siy + viyt) )2 < D

⇐⇒ (sx + vxt) 2 + (sy + vyt )2 < D2

⇐⇒ (s + tv )2 < D2 .

A vertical conflict occurs if there exists a future time t where the aircraft are
within distance H of each other, i.e.,

I (soz + tvoz ) — (siz + tviz) I < H.

Two aircraft are in a conflict if there exists a future time t where the two air-
craft have both horizontal and vertical conflicts—that is, there is a predicted loss of
separation.

3.2 Lookahead Time

If an aircraft restricts its movement based on all aircraft within its ADS-B range,
then many relatively safe maneuvers will be unnecessarily avoided. 3 Instead, only
those aircraft that will cause near-term conflicts should be included in the compu-
tation of conflict prevention information.

We follow the approach from Predictive ASAS [5] by introducing two parameters,
Tred and Tamber, which divide the set of conflicts based on their nearness (in time) to
a loss of separation. The Predictive ASAS uses 3 minutes for Tred and 5 minutes for
Tamber; our analysis leaves these as parameters. From a prevention band approach,
if a loss of separation will occur within Tred, then the region is colored red. On

3ADS-B range over the ocean may reach 200 nautical miles.
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the other hand, if a loss of separation will occur after Tred, but before Tamber, then
the region is colored amber, otherwise it is painted green. Since Tred < Tamber, the
boundaries for a guidance maneuver (ranges of track angles, etc.) for a conflict that
is within Tred are completely contained within the boundaries for a conflict that is
within Tamber. With this observation, the majority of the analysis can use a single
lookahead time T, and Tred and Tamber can be accounted for by their relationship.

When we consider the lookahead time we notice that there are three distinct
cases, as illustrated in figure 4. In figure 4a, all points in the protected zone can be

T ---	 T -----	 T ----

(a)	 (b)	
(c)

Figure 4. Relationship of Encounter Geometry and Lookahead Time

reached within the lookahead time. In this case the lookahead time does not enter
into the analysis, so the aircrafts’ encounter geometry can be evaluated without
regard to a lookahead time. In figure 4c, where no point in the protected zone can
be reached within the lookahead time, this conflict is too far away to be considered,
so it does not restrict the ownship’s maneuvers—essentially the traffic is ignored.
It is only in figure 4b, where some points in the protected zone may be reached
within the lookahead time, that lookahead time considerations must be addressed.
We label situations like figure 4a as encounter geometry cases. We label the cases
of figure 4b as lookahead time cases. The lookahead time cases involve analysis of
both geometric and time considerations. Although the principle illustrated by this
figure still holds, the protected zone is not an arbitrary regular polygon; rather, it is
a rectangle for vertical speed maneuvers (incorporating the horizontal and vertical
distance between the two aircraft) or a circle for both track angle and ground speed
maneuvers (incorporating both horizontal dimensions).

4 Vertical Speed Prevention Bands

A vertical speed prevention band algorithm determines those vertical speeds that
will result in a conflict with another aircraft. The algorithm can be used to paint
a display similar to figure 5: the red region indicates those vertical speeds that will
result in a conflict, while green indicates speeds that will not cause a conflict within
the lookahead time.

It is assumed that the aircraft’s track angle and ground speed remain unchanged
while the vertical speed is varied. Consequently, if the current horizontal velocity
does not have a horizontal conflict, then the solution is trivial, i.e., the region is

6
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Figure 5. Vertical Speed Bands

green for all vertical speeds. When the current track does have a horizontal conflict
then we are faced with the situation shown in figure 6. In this translated frame
of reference the traffic aircraft is centered in the coordinate system with a vertical
protected zone from —H to +H . In this figure there are several relative velocity
vectors are shown, some in conflict (red) and some that are not (green).

Computing conflict prevention bands involves whole ranges of vertical speeds.
Figure 6 illustrates the problem. In this figure, the horizontal dimension represents
along track distance between the two aircraft and the vertical dimension represents
vertical distance between the two aircraft. The blue dot represents the position of
the ownship and the the magenta dot represents the position of the traffic. The
arrows represent potential velocity vectors for the ownship (varying the vertical
speed). The red vectors indicate velocities where the protected zone is violated and
the green vectors indicate conflict-free trajectories. Instead of computing individual
trajectories, we want to analytically determine which vectors are green and which
are red as the vertical speed is varied. In this figure the two relative velocity vec-
tors v1 and v2 are the vectors that sit at the transition point between colors. If
we can compute these, then we can accurately paint the vertical speed prevention
band. Recognizing that vertical speed cannot be unlimited, the trajectory with the
maximum vertical speed is indicated with max_vs and the vector with the minimum
vertical speed is indicated by -max_vs..

4.1 Encounter Geometry Analysis

To determine the transition vectors for the encounter geometry, we consider four
cases of the two aircraft. Examples of these four cases are shown in figure 7. These
four cases correspond to: (a) no horizontal conflict, (b) vertical loss of separation,
i.e., —H < sz < H, but not a horizontal loss of separation, i.e., s2 + s2 > D2 , (c)xy

a horizontal loss of separation, but not a vertical loss of separation, and (d) neither
vertical nor horizontal loss of separation. These cases are exhaustive because, by

7



Figure 6. Vertical Speed Trajectories

(a)	 (b)

(c)	 (d)

Figure 7. Vertical Encounter Geometries



assumption, we are excluding the case where there is a loss of separation both
vertically and horizontally. The first case is trivial since all vertical speeds avoid
conflicts and therefore none need to be prevented. The other three cases rely on
the time to enter or exit the protected zone horizontally. To find these times,
we perform a linear prediction of the relative position of the two aircraft into the
future. We know the protected zone is entered when this position equals D, that is,
an equation representing the intersection of a trajectory with a circular protected
zone. Mathematically, we solve the following equation for t:

11s + tv 11 = D,	 (2)

where, for this derivation, s and v are two dimensional vectors. This equation
expandsto

(s + tv )2 = D2 ,

which further expands to

	

t2 v2 + 2t (s . v) + s2 — D2 = 0.	 (3)

This equation is a quadratic in t, with

a = v2, b = s . v, c = s2 —D2 .

The roots of this equation give us the entry and exit times into the protected zone.
These are named O(s , v, —1) and O(s , v, +1), respectively:

	

O(s , v, —1) = 
—b — b2 — ac	

(4)
a	

,

	O(s v +1) = 
—b + b2 — ac	

(5),,a

Where it is unambiguous, we will abbreviate these as O_ and O+ . If the relative
ground speed is 0, i.e., v = 0, then O± is undefined, which corresponds to the first
case (no horizontal conflict), unless the two aircraft are not horizontally separated.

4.1.1 Vertical Loss of Separation

The situation where there is vertical loss of separation but not a horizontal loss
of separation (the second case, mentioned above) can be solved by computing the
vertical speed required to enter the protected zone (that is, when the time is O _ ) at
its top and bottom edges. These two speeds can be represented with the introduction
of a parameter E, which is defined as

E = +1 top of the vertical protected zone
E = — 1 bottom of the vertical protected zone

9



Using E the top and bottom edges can be represented as EH. The vertical speed is
computed with the following derivation.

sz + vz E)_ = EH,

vz E)_ =	 EH — sz ,

EH — sz
vz =	 ,

E)_
EH — sz

voz — viz =	 ,
E)_

voz
EH — sz

=	 viz +	 .
E)_

The right side of this equation is called vertical_THETA1 (s , vo, vi, E). We name the
solutions from this function as follows

V1m = vertical THETA1 (s , vo, vi, — 1),

V1p = verticalTHETA1 (s , vo, vi, +1),

where s, vo, vi are three dimensional vectors. The vertical bands should be colored
as follows for an arbitrary vertical speed voz:

-max_vs < voz < V1m green
V1m < voz < V1p red

V1p < voz < max_vs green

where max_vs is the maximum vertical speed.

4.1.2 Horizontal Loss of Separation

The third subcase occurs when s2 < D2 . In this case, we are interested in the time
to exit the horizontal protected zone. If the aircraft is below the protected zone,
then we must go no higher than —H vertically. On the other hand, if the aircraft is
above the protected zone, we must go no lower than + H. Both of these destinations
can be captured by the formula sign (sz )H. To compute the vertical speed we use
the derivation

sz + vzE)+ = sign (sz )H,

vzE)+ = sign (sz )H — sz ,
sign (sz )H — sz

vz =	
E)+ 	,

voz — viz = 
sign (sz )H — sz

E)+

voz = viz +	 .
sign (sz )H — sz

E)+

The right side of the last equation is called vertical_THETA2 (s , vo, vi), which we
abbreviate as V2 . The regions are colored as follows:

10



sz > 0 sz < 0
-max_vs < voz < V2 red -max_vs < voz < V2 green
V2 < voz < max_vs green V2 < voz < max_vs red

4.1.3 No Loss of Separation

The fourth case is a combination of the equations developed in the two previous
cases. The regions are colored as follows

sz > 0 sz < 0
-max_vs < voz < V1m green -max_vs < voz < V2

V1m < voz < V2 red V2 < voz < V1p
V2 < voz < max_vs green V1p < voz < max_vs

4.1.4 Algorithm for Encounter Geometry

To develop an algorithm to compute the vertical speed bands, we must combine
the four cases into a single solution. But a simple observation suggests a simple
algorithm. We notice that there are only a small number of critical points where
the vertical bands may change colors: V1m, V1p and V2. We observe that if we
evaluate the conflict status around these points, then we can characterize the whole
range of vertical speeds. The computation of these three points can be combined
into a single function:

vertical speed circle (s , vo , vi, E) =

IF (vox — vix )2 + (voy — viy ) 2 = 0 THEN

(vox, voy, viz)

ELSIF E sz < H AND s2x + s2
y > D2 THEN

(vox, voy, vertical THETA1 (s , vo , vi, E))

ELSIF E sz > H THEN

(vox, voy, vertical THETA2 (s , vo, vi))

ELSE

(0, 0, 0)

ENDIF

where
vertical_THETA1 (s , vo, vi, E) = viz + 

EH — sz

O_

and

vertical_THETA2 (s , vo, vi) = viz + 
sign (sz )H — sz

O+

Due to geometric limitations all three points are never needed; instead, at most, two
are required:

Zm = verticalspeedcircle (s , vo, vi, — 1)

Zp = verticalspeed circle (s , vo, vi, +1)

11



We use the z component of these vectors and add the minimum ( -max_vs) and
maximum (+max_vs) vertical speeds to a list of four values. If we sort this list, we
end up with four ascending values:

v0 < v1 < v2 < v3

Usually v0 is the minimum vertical speed and v3 is the maximum vertical speed;
however, this is not required. These four values correspond to three possible regions
and the color of these regions can be determined using a conflict probe like CD3D
(see appendix A).

v0 to v1 cd3d("0+"
1 )2

v1 to v2 cd3d("1+"2 )2

v2 to v3 cd3d("2 +"3 )2

4.2 Lookahead Time Analysis

As introduced in section 3.2, we use the two lookahead times representing near-term
conflicts (Tred) and mid-term conflicts (Tamber). We first consider a single lookahead
time (T), then later add the second time.

In the finite lookahead problem, we adjust the limits of the vertical speed based
on the relationship between the lookahead time and the time to enter or exit the
protected zone horizontally (O ± ). Comparing the lookahead to the entry and exit
times results in three cases:

• Lookahead time is before the entry time (T < O_ ).

• Lookahead time is between the entry and exit times (O_ < T < O+ ).

• Lookahead time is after the exit time (O + < T).

These cases correspond to situations where all points within the protected zone can
reached within the lookahead time, some points can be reached within the lookahead
time, and no point may be reached within the lookahead time. The first and third
cases are elementary. In the first case, no vertical speeds are prevented and in the
third case, the results from the encounter geometry solution can be used. The second
case (figure 8) requires additional analysis. In this illustration, the horizontal axis
represents time rather than distance. Here the lookahead time falls between the
entry and exit times. The vector v is drawn at the point where T is the entry point
into the protected zone. Following a development similar to vertical_THETA2, this
vector is computed by

sz + vzT = EH,

vzT = EH — sz ,
EH — sz

	

vz =	 T ,

EH — sz

	

voz — viz =	 T ,

	_ 	 EH — sz
voz	 viz + T

12



sign (sz )H — sz

min(Θ+ , T)
vertical_THETA2 (s, vo, vi, T) = viz + (6)

Theta− 	 T	 Theta+

i
i

'	 v 
2

s

Figure 8. Vertical Speed Range with Lookahead Time

Since we are excluding the case where T > Θ+ , we can combine this with the
previous definition of vertical_THETA2 to get a single expression

With this new definition, the functions vertical_THETA2 and vertical_speed_circle
can be extended with a lookahead time.

4.3 Algorithm for Lookahead Time

We first generalize verti cal_ speed_ circle to include the lookahead parameter as
follows:

verticalspeedcircle (s, vo, vi, T, E) =

IF (vox — vix ) 2 + (voy — viy ) 2 = 0 THEN

(vox, voy, viz)

ELSIF E sz < H AND s2x + s2
y > D2 THEN

(vox, voy, vertical THETA 1 (s, vo, vi, E))

ELSIF E sz > H THEN

(vox, voy, verticalTHETA2 (s, vo, vi, T))

ELSE

(0, 0, 0)

ENDIF

where vertical_THETA2 is defined by (6). We instantiate this function using Tred

and Tamber yielding four possible values

Zrm = verticalspeedcircle (s, vo, vi, Tred, — 1)
Zrp = verticalspeed circle (s, vo, vi, Tred, +1)

Zam = verticalspeedcircle (s, vo, vi, Tamber, — 1)
Zap = vertical speed circle (s, vo, vi, Tamber, +1)

13



Once again we use the z component of these vectors and add the minimum and
maximum vertical speed to create a list of six values. If we sort this list, we end up
with six ascending values: v0 G v1 G v2 G v3 G v4 G v5 . These six values correspond
to five possible regions, where the color can be determined using a conflict probe
like CD3D (see appendix A).

v0 to v1 cd3d(^0

2^
1
 )

v1 to v2 cd3d ( ^ 1 ^2 )2

v2 to v3 cd3d(^2 	 ^3
2	 )

v3 to v4 cd3d ( ^3 ^3 )2
v4 to v5 cd3d ( ^4 ^5 )2

5 Horizontal Considerations

Both the ground speed and track prevention bands are horizontal problems. Similar
to the vertical case, if there is not a vertical conflict, then all ground speeds and
track angles should be allowed. So we implicitly consider only those cases where
there is already a vertical conflict. For the ground speed prevention band, we vary
the ground speed of the ownship and determine those ground speeds leading to a
conflict. We denote the ownship velocity vector with ground speed κ as

vn=
ii 

κ

o ii
(vox , voy ) .	 (7)

For the track prevention bands, we vary the track angle of the ownship velocity and
determine those track angles leading to a conflict. We denote the ownship velocity
vector with track a as

vca = (w cos a, w sin a),	 (8)

where w is constrained by w2 = v2ox + v2oy. In both of these definitions, the vertical
speed is unchanged.

In both cases, the boundaries are determined by the vectors that are tangent to
the protected zone in the relative frame of reference. The next two sections involve
developing forms to express and compute these tangents. Both cases deal primarily
in the horizontal dimensions; so, the vectors in this section are the two dimensional
versions of the vectors presented in section 3.1. Both vn and vca may be extended
to three dimensional vectors by including the original vertical speed: (vnx, vny, voz)

or (vcax, vcay, voz).

5.1 Tangent Condition

We begin by examining the necessary conditions to ensure a relative velocity vector
v is tangent to the protected zone. One condition on the vector v is that, there
must exist some time t that results in a position at the edge of the protected zone.
We start with (2) and follow the same derivation to the quadratic (3). The roots of
this equation give us the entry and exit times into the protected zone, which were
previously labeled as Θ_ in (4) and Θ in (5). Equation (3) provides the general
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solution for the intersection of a trajectory and the protected zone. To find the
resolution trajectory, we must constrain v to only those velocity vectors that are
tangent to the protected zone. This will occur when the entrance and exit times
to the protected zone are equal, O _ = O+ . These times will be equal when the
discriminant of (3) is zero, that is,

(s • v )2 — v2 [s2 —D 2 ] = 0.	 (9)

During the development of KB3D several simplifications to the discriminant were
discovered. The key to these simplifications is the lemma sq_det:

Lemma 5.1 (sqdet).

(s • v )2 = v2s2 — det (s , v )2 , (10)

where, det (s , v) ≡ s1 • v and s1 = (—Sy , Sx ). (11)

Proof. Algebraic simplification, which establishes

S2 V2+2S 2J S v + S2 
v2 S2 

V2 + —S2 v2 S2 
V2 + —S2 V2 + v 2 D 2 =x x	 x x y y	 y y	 x x	 x y	 y x	 y y

— (Sxvy — Syvx )2
 + v2D2.

Using the sq_det lemma twice, (9) can be simplified as follows

(s • v )2 — v2 [s2 — D2 ] =	 0,

v2s2 — det (s , v )2 — v2 [s2 — D2 ] =	 0,

—det (s , v )2 + D2v2 =	 0,

D2v2 =	 det (s , v )2 ,

D2v2s2 — D2det (s , v )2 =	 det (s , v )2s2 — D2det (s , v)2 ,

D2 [v2s2 — det (s , v)2 ] =	 det (s , v )2 [s2 — D2 ],

D2 (s • v )2 =	 det (s , v )2 [s2 — D2 ],

(s • v )2 =	 R2det (s , v )2 ,

I s • v I =	 R Idet (s , v ) I,

s • v =	 RE det (s , v),	 (12)

where E E {—1 , +1} and
√

s2 — D2
R =

	

	 (13)
D

Any s and v vector that satisfies (12) forms a trajectory that is tangent to the
protected zone. This remarkably succinct result factors out the squared terms of (9)
into a linear expression using a simple signed variable E. Formula (12) efficiently
defines tangent vectors but it does not filter out tangents that have occurred in the
past, i.e., that point away from the protected zone. To perform this filtering, we
rely on the following lemma to find the time of closest approach.
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Lemma 5.2 (closest approach). The minimal separation occurs at time T, where

s • v
T = — 2

. (14)
v2

Proof. The distance between the aircraft d (t) = I Is + tv I I achieves a minimum when

d2 (t) = (s + tv )2

= s2 + 2t (s • v) + t2v2.

achieves a minimum. Since this distance function has no maximum (at infinite time,
the distance is infinite), the minimum occurs when the derivative of d2 (t) equals zero:

2(s • v) + 2tv2 = 0.

Solving for t we have

s • v
t = — 2v .

Therefore s • v is negative if the tangent occurs in the future. We now define a
predicate that defines tangents that are towards the protected zone:

Definition 5.3 (linesolution?).

line solution? (s , v, c) - Rc det (s , v) = s • v AND c det (s , v) G 0.	 (15)

It is easy to see that line solution? (s , v, c) implies that s • v G 0.

5.2 Computing Tangents

In this section we develop a simple way to find a point Q on the line from s that is
tangent to the protected zone. An important aspect of the definition of Q is that
it is only determined by the geometry of the encounter—the aircraft velocities are
not involved. We restrict our attention to situations where there has not yet been
a loss of separation, i.e., s2 — D2 > 0. We define two auxiliary functions α̂ (s) and
β̂(s) as follows:

D2
α̂ (s) = 

s2 ,
√

β (s) = 
D ss2— D2 = R α̂ (s),

where, R is defined as in (13). We will abbreviate these values as α̂ and β̂ when it is
clear. The following equation is a simple algebraic consequence of these definitions

—β̂ = 
α

R

 
1.	 (16)
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We then define the components of Q (s, E) as follows

Q'; (s , E) = α̂ (s) s'; + E β̂(s) sy ,

Qy (s , E) = α̂ (s) sy — E β̂ (s) s'; .

The vector Q (s, E) — s is the desired tangent vector.
We would also like to compute a suitable tangent for the special case where

s2 = D2 . In this case, an appropriate vector is the perpendicular vector. We define
the function tangent_line in figure 9 to capture this special case. We now define

tangentline (s , E) =

IF s2 = D2 THEN

— E s⊥

ELSE

Q(s, E) — s

ENDIF

Figure 9. Tangent Vector Computation

a predicate tangent_line? to represent the set of all tangent velocity vectors:

Definition 5.4 (tangent line?).

tangent_line? (s , v, E) - ] k > 0 : v = k tangent_line (s , E)	 (17)

Next we will show that all of these vectors satisfy line_solution? and hence are
tangent to the protected zone.

Theorem 5.5 (tangentlinesolution).

tangent_line? (s , v, E)	 line_solution? (s , v, E).

Proof. The s2 = D2 case is trivial, so we focus on the cases where s2 > D2 . First we
prove tangent_line? (s , v, E) ==>. line_solution? (s , v, E). Since v = k [Q (s , E) —

s], we can use many algebraic simplifications and (16) to obtain

s'v = s' k(Q—s)

= k (α̂ — 1)s2

= k (—β̂R)s2

= RE (sl
 ' k (Q — s))

= R E (sl
 ' v)

= R E det (s , v).
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Also, we need to show that c det (s , v) < 0. Since β̂ ≥ 0 we have —β̂s2 < 0. The
following algebraic manipulation

β̂s2 < 0 ⇐⇒

⇐⇒

⇐⇒

⇐⇒

⇐⇒

c(—c β̂ s2) < 0

c [s1 • (Q — s)] < 0

c (s1 • v) < 0

c det (s , v) < 0
s • v

c	 < 0.
R

establishes the needed result.
Now we prove that line_solution? (s , v, c) =⇒ tangent _line? (s , v, c). We

could prove that v is a multiple of Q (s , c) — s, or more succinctly, we could prove
that v and Q (s, c) — s are parallel. To show that two vectors are parallel it is
sufficient to show that their 2-dimensional determinant (11) is zero. So we will
show that det (v , Q — s) = 0, which is equivalent to det (v , Q) = det (v , s), since
det (v , Q — s) = det (v , Q) — det (v , s). Thus,

det (v , Q) = v1 • Q

= vxQy — vyQx

= vx [α̂ sy — c β̂ sx] — vy [α̂ sx + c β̂ sy ]

= α̂ (v1 • s) — cβ̂ (s • v).

Using (16) and line_solution?, we further simplify:

6z (v1 • s) —cβ(s • v)=6z (v1 • s)+ c
(6

1R

1)(
s • v )

= α̂(v1 • s) + (α̂ — 1)(s1 • v)

= α̂(v1 • s) — (α̂ — 1)(v1 • s)

= v1 • s

= det (v , s) .

This ends the groundwork for computing tangents in the horizontal plane. These
results will be used to find the prevention bands for ranges of either ground speeds
or track angles.

5.3 A Simple Formula for Horizontal Conflict

It is necessary for us to detect whether a given vector is in horizontal conflict (1).
The following theorem provides the needed relationship between horizontal conflict
and a simple formula that does not include a quantification over time. Instead,
this theorem provides an equivalence between horizontal_conflict?(s,v) and
the conjunction of two simple inequalities.
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Theorem 5.6 (horizontal solution).

horizontal conflict? (s , v)	 s • v < R det (v , s) < —s • v,

where, R is defined as in (13).

Proof. We note that another way to describe horizontal-conflict? is as a trajec-
tory, which points towards the protected zone. Any trajectory that points towards
the protected zone (and has not already entered the protected zone) will have entry
and exit times into the protected zone—called O _ and O+ . These times are only
defined when the discriminant of the quadratic (9) is greater than zero.

Now, we show that when the discriminate is greater than zero, then certain
inequalities are satisfied. We follow a derivation similar to the development of (12).

0,

v2 (s2
 — D

2 ),

v2 (s2
 — D

2 ),

det (v , s)2 ,

det (v , s) 2s2 — D2det (v , s)2 ,

det (v , s) 2 [s2 — D2 ],

det (v , s) 2 [s2 — D2 ],

S2 — D2

(s • v )2 > det (v , s)2 '
D2

,

(s • v )2

Is • v I

which can be expanded into the following conjunction of inequalities

— I s • v I < R det (v , s) < I s • v I.

The initial situation is in horizontal-conflict?, so s • v must be less than 0, thus

s • v < R det (v , s) < —s • v.

The proof steps can be reversed to obtain the implication in the other direction. q

It is convenient to define

horizontalcriterion? (s, v, E) - s • v > R E det (v , s) .

Using this definition we immediately obtain:

Theorem 5.7 (horizontal criterion independence).

NOT horizontal conflict? (s , v) '#=^

horizontal criterion? (s, v, —1) OR

horizontal criterion? (s , v ,+1).

(s • v)2 — v2 (s2 — D2) >

(s • v )2 >

v2s2 — det (v , s)2 >

D2v2 >

D2v2s2 — D2det (v , s)2 >

D2 [v2s2 — det (v , s)2] >

D2 (s • v )2 >
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6 Ground Speed Prevention Bands

A ground speed prevention band algorithm calculates the ground speeds of the
ownship aircraft which will result in a conflict with another aircraft. Figure 10 gives

500

400

ground speed

300 (knots)

200

100

0

Figure 10. Ground Speed Prevention Bands

an example display of ground speed prevention information. As described earlier,
we use two parameters to represent the lookahead times ( Tred, Tamber) that are
used to filter conflicts that are too far in the future. The red region in figure 10
indicates which ground speeds will result in a loss of separation within Tred while
green indicates ground speeds that will not result in a loss of separation before
Tamber. The bands algorithm varies the ground speed while holding vertical speed
and track angle constant. For some ground speed the aircraft will be in conflict
with the traffic and for other values it will not be, as illustrated in figure 11. One

50

200

250

300

Figure 11. Ground Speed Trajectories

may recall that a change in the ownship’s ground speed often results in a change in
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the direction of the velocity vector in the relative frame of reference. The transition
from green to red and vice versa occurs at the tangent vectors.

6.1 Encounter Geometry Analysis

Using the Q theory developed in section 5.2, we need to find a k such that

Avo — vi = k tangent-line (s , E),	 (18)

where Avo represents a change to (only) the ground speed of the ownship’s veloc-
ity. Recall that tangent-line (figure 9) returns a vector that is tangent to the
protected zone. Therefore, (18) represents a change to the ownship’s ground speed,
which results in a relative velocity vector that is tangent to the protected zone. We
now wish to find a way to calculate k and A assuming the term tangent-line is
represented as v.

Lemma 6.1 (kldet).

kv + vi = Avo

k det (vo , v) = det (vi , vo) AND A det (vo , v) = det (vi , v ).

Proof. The components of kv + vi = Avo are

kvx + vix = Avox ,

kvy + viy = Avoy .

Multiplying both side with voy and vox, we obtain:

kvxvoy + vixvoy = Avoxvoy.

kvyvox + viyvox = Avoy vox.

Subtracting gives us:

k(vxvoy — vyvox) + vixvoy — viyvox = 0,

or
k det (v , vo) = det (vo , vi ),

which is equivalent to
k det (vo , v) = det (vi , vo ).

Using a similar derivation, yields the following relationship for A:

A det (vo , v) = det (vi , v).
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gs line eps (s , vo , v2 , E) =

v = tangentline (s , E)

IF det (vo , v) =6 0 THEN

k = 
det (v2 , vo)

det (vo , v)

A = 
det (v2 , v)

det (vo , v)

IF A > 0 THEN

A vo

ELSE

(0 , 0)

ENDIF

ELSE

(0 , 0)

ENDIF

Figure 12. Ground Speed Scale Factor Computation

Therefore, if we instantiate v in this lemma with a known tangent vector—that is,
the result from tangent_line in figure 9—we have the needed k that satisfies (18).
With this result we can compute the tangent vector with the function gs_line_eps
(figure 12). Note that if det (vo , v) = 0, then there is no ground speed change in the
direction of vo that produces a tangent. The A > 0 test eliminates solutions that
are in the opposite direction.

Using the definition of gs_line_eps in figure 12 we obtain two potential bound-
ary ground speeds:

Gm = I Igslineeps (s , vo , v2 , −1)

Gp = I Igslineeps (s , vo , v2 , 1) II.

Either of these speeds may be undefined, that is, the gs_line_eps function returns
a zero vector. If Gm is undefined, we set it to 0. If Gp is undefined, we set it equal
to max_gs, the maximum ground speed to be displayed. With the definition of these
two speeds, the display can be painted as follows:

gs < Gm green
Gm < gs < Gp red

Gp < gs green
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6.2 Lookahead Time Analysis

We now incorporate a finite lookahead time into the analysis of ground speed bands.
Using the general outline from section 3.2, if the entire protected zone is inside
the lookahead time, then the bands are easily computed using the technique from
section 6.1. However, special techniques must be used if the lookahead time crosses
the protected zone as show in figure 13. We must calculate the intersection of the

T

Lookahead Time

Figure 13. Ground Speed Trajectories with Lookahead Time

protected zone with the lookahead time. The relative velocity for a ground speed
change is given by v = Avo + vz , where A is a factor to adjust the ownship’s ground
speed and equals llvoll, which is consistent with (7). To find the point where this
velocity intersects the protected zone, we need to find a A such that I Is + Tv I I = D,

where T is the lookahead time.

IIs + vTII = D

(s + vT) 2 = D2

(s + (Avo — vz )T) 2 = D2

If we let W = s — Tvz , then

(W + AvoT) 2 = D2

(W + AvoT) • (W + AvoT) = D2

Expanding we obtain a quadratic equation in A with

a = T2 v2
o , b =2T (W • vo), c = W2 —D2 .

When the discriminant is greater than or equal to zero, then the intersection between
the circle and the lookahead time exists. We only want solutions where A > 0. The
function gs_circle (figure 14) solves this quadratic and returns a nonzero vector
when an intersection point exists.

23



gscircle (s , vo , vZ , t, irt) =

W = s - t vZ

a = t2 v 2o

b =2t (W • vo )

c = W2- D2

IF discr (a, b, c) > 0 THEN

A = root (a, b, c, irt)

IF A > 0 THEN

A vo

ELSE

(0 , 0)

ENDIF

ELSE

(0 , 0)

ENDIF

Figure 14. Ground Speed Circle Algorithm

6.3 Vertical Considerations

Up to this point we have ignored the impact of the aircraft’s vertical speed. If
the aircraft are in conflict horizontally but not vertically for a particular ground
speed, then that ground speed should be allowed. Only if there is both horizontal
and vertical conflict should that ground speed be prevented (i.e., painted red). For
example, the aircraft could be vertically and horizontally separated, but the loss of
separation occurs once the vertical standard is violated, as illustrated in figure 15.
In this case the time to enter vertically is critical to the solution. Alternately, we

Figure 15. Vertical Entry Time Considerations
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could have the same situation horizontally, but due to different vertical constraints,
there is no conflict, as illustrated in figure 16. In this case, the time to exit vertically
is important.

Figure 16. Vertical Exit Time Considerations

To address these situations, we must calculate the time to enter and exit the
protected zone vertically:

	

—sign (vz )H — sz 	 (19)

	

tentry =	 v	
,

z

sign (vz )H — sz

	

texit =	 .	 (20)
vz

Even though the aircraft are currently vertically separated they will lose vertical
separation after tentry. Consequently, the vectors that intersect the circle at these
vertical entry points are velocity vectors where separation may be lost. If the aircraft
are currently not vertically separated, they may become separated at time texit.

Therefore, the velocity vectors that intersect the circle at these vertical exit points
may be vectors where separation is regained.

The ground speeds that corresponds to these times may be found using the
Ground Speed Circle algorithm (figure 14) with tentry/exit for the time parameter.
In some cases these times may be negative, meaning the aircraft has already entered
the vertical protected zone or that the aircraft will never enter the protected zone
vertically. In these cases, a constraint on the entry/exit time is ignored. Likewise, if
the vertical speed (vz ) is zero, then these times are undefined and the corresponding
constraint is ignored.

6.4 Sketch of a Ground Speed Algorithm

The basic idea of a ground speed algorithm is to create a sorted list of the ground
speeds from the magnitude of the non-zero vectors representing the key points in
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the encounter:

Rm = gslineeps (S , Vo, Vi, — 1),

Rp = gslineeps (S , Vo, Vi, +1),

Cmr = gscircle (S , Vo, Vi, Tred, — 1),

Cpr = gs circle (S , Vo, Vi, Tred, +1),

Cma = gs circle(S,Vo,Vi,Tamber, —1),

Cpa = gs circle (S , Vo, Vi, Tamber, +1),

Cmn = gs circle (S , Vo, Vi, tentry, — 1),

Cpn = gs circle (S , Vo, Vi, tentry, +1),

Cmx = gscircle (S , Vo, Vi, texit, — 1),

Cpx = gscircle (S , Vo, Vi, texit, +1).

For completeness, 0 and the maximum ground speed are added to this list. A ground
speed is chosen between every two sorted elements in this list and this ground speed
is checked with a conflict probe like CD3D (see appendix A) to determine the color
of the region. We do not offer a proof of correctness of this algorithm in this paper;
this will be pursued in future work. A formal specification of the gs_line_eps
function is presented in appendix 13.1 and a formal specification of the gs_circle
function is presented in appendix 13.2.

7 Track Angle Prevention Bands

Using the definition of Vα from (8), we define a relative velocity vector that is a
function of a as

V = Vα — Vi	 (21)

= (w cos a — vix, w sin a — viy, voz — viz ) ,

where w is the ground speed and is constrained by w2 = v2ox +v 2oy . The boundaries
of the track angle prevention regions are those values of a that produce relative
velocity vectors that are tangent to the protected zone. In this section we explore
three ways to find these angles.

Reference [5] describes an interesting situation when two prohibited regions are
produced by a single aircraft pair. This situation is illustrated in the absolute
reference frame by figure 17. As a check on our work, any equations we derive must
be able to produce zero, two, or four a angles for certain encounter geometries.

This section begins by looking at multiple ways to find the boundary angles for a
pair of aircraft only considering the encounter geometry. Then we develop inequality
reasoning that enables us to properly identify which regions are the conflict regions
and which are conflict-free. Finally, we examine solution methods which restrict the
regions based on a lookahead time.
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Figure 17. Two Prohibited Regions

7.1 Boundaries for Encounter Geometry Cases

We know that tangent velocity vectors must satisfy (9). The most obvious way to
find these tangent vectors involves substituting the definition of v from (21) into (9)
and solving for the track angle, a. This approach yields a complex formula involving
sin a and cos a. We can use the equality cos a = 1 — sin2a and get a formula
involving just sin a, but to remove the square root terms, we will have a large,
fourth order polynomial in sin a. However, if instead of using (9) directly, we use the
simplification captured in line_solution? (15), we arrive at a quadratic function
of a, whose solution is much more practical. We pursue multiple approaches to solve
this equation. The first two approaches find the vector components of v = (vx , vy ).
Then by (21), we can obtain a, as follows4

a = atan (vx + vix, vy + viy ) .	 (22)

In other words, we defer the use of trigonometry until the end of the derivation.
Of the two approaches that use (22), one is based on the development of the Q
vector in section 5.2. The other method finds the vector components directly and is
called the algebraic approach. The final approach finds a directly through complex
trigonometric reasoning. Not surprisingly, this approach is called the trigonomet-
ric approach. The first approach is the most mathematically succinct. The other
approaches are presented in an attempt to be comprehensive.

7.1.1 Boundaries by Q-theory

From theorem 5.5, we know that k tangent_line (s , E) is a velocity vector that is
tangent to the protected zone and therefore satisfies (15). Computing the boundary
track angles involves finding a k that satisfies

va — vi = k tangent_line (s , E).	 (23)
4We use the arctangent, atan (a, b), as the arctangent of b/a. The arctangent function in some

programming languages reverses the order of these parameters.
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Once this k is found, the boundary angles for each E can be found by (22). We
claim that the needed k may be computed with the function in figure 18 pro-
vided the v' parameter is tangent_line (s , E). This calculation masks the negative

calck (v' , vo , vi , E) =

a =(v')2

b =2(v ' • vi )

c = v2
i  — v 2o

Δ = b2 — 4ac

IF Δ > 0 THEN 
—b + E^

2a

ELSE —1

ENDIF

Figure 18. Computation of k for Track Solutions

roots because they represent velocities in the opposite direction and hence they
will never be used. To show this vector satisfies (23), it is sufficient to show that
k tangent_line (s , E) + vi is a velocity vector with the same speed as vo . Formally,
this is stated as theorem 7.1.

Theorem 7.1 (Calck). Letting k be calc_k (v' , vo , vi , irt), then

jjk v' + vi jj = jjvo

when k is non-negative.

Proof. calc_k is a solution of the following quadratic equation:

ak2 + bk + c =0 ,

(v' ) 2k2 + 2(v' • vi )k + v2
i = v2o,

(kv' + vi ) • (kv' + vi ) = v2o,

(kv' + vi )2 = v2o,

or jjkv' + vi jj = jjvo jj as required.

We know that calc_k will satisfy (23), provided v' is tangent_line (s , E). We
can combine these concepts may into a function (figure 19) to compute a velocity
vector that is tangent to the protected zone.
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track line (s , vo , vi , E, irt) =

LET v0 = tangentline (s , E),

k = calck (v0 , vo , vi , irt) IN

kv0

Figure 19. Computation of Track Line Solutions

7.1.2 Boundaries by Direct Algebra

Now we pursue an algebraic approach to solve for the vector components of v.
Starting from line_solution? (15), we have:

RE (s1 • v) = s • v,

RE (sxvy — syvx) = sxvx + syvy.	 (24)

Assuming vx =7^ 0, we let p = vy

vx
 , we obtain:

RE (sxpvx — syvx) = sxvx + sypvx ,

RE (sxp — sy) = sx + syp,

_ REsy + sx
p	 .

REsx — sy

Since v + vi = va and l lva ll2 = llvo ll2 , then following a development similar to that
presented in reference [4],

llvo ll2 = llv + vi ll2,

v 2o = v2 + 2(v • vi ) + v2
i ,

0 = v
2
x (1 + p2 ) + 2vx (vix + pviy) + v

2
i — v

2
o.

This is a quadratic in vx with:

a = ( 1 + p2), b = 2 (vix + pviy ), c = v2
i  — v2o.

The root of this quadratic will give a solution to vx and from the definition of p we
can obtain vy. Since vi is known, we can obtain va from v = va — vi . Four values of
vx are possible since each value of E produces two p ’s and for each of these p ’s there
are two solutions to the quadratic equation. Finally, we must address the special
case when vx = 0. From (24) we have

RE sxvy = syvy.

If RE sx = sy, then any vy can be used. If it is not equal, then v must be (0, 0).
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7.1.3 Boundaries by Trigonometry

This section presents a trigonometric approach to finding the region’s boundaries.
Using line_solution? (15) and v = va — vi , we obtain:

RE (s1 • v)

RE (s1 • (va — vi ))
RE (s1 • va ) — RE (s1 • vi )

RE (s1 • va ) — s • va

va • (RE s1 — s)

Using (8), we have

= s • v,

= s • (va — vi ) ,

= s • va — s • vi ,

= RE (s1 • vi ) — s • vi ,
= vi • (R^ s 1 — s ) .

(wcosa, wsina ) • ( —REsy — sue, R^sue — sy) = vi • (Re s1 — s ) .

Rearranging terms we have

w (R^sue — sy) sin a — w (REsy + sue) cos a = vi • (Re s1 — s ) .

Letting

E = w (R^sue — sy), F = —w (R^sy + sue), G = vi • (RE s1 — s ) ,

we have:
E sin a + F cos a = G. (25)

Using a standard trigonometric identity (see appendix C), which is true as long as
E and F are not both 0, we obtain

E sin a + F cos a = E2 + F2 sin (a + atan (E, F)).

From which we get

sin(a + atan (E, F)) =	
G

√
E2 + F2.

If EG	 G 1 then in some 27r range, we have

^

^
a1 = asin	

G
√ 	 atan (E, F),

E2 + F
2 —

a2 = 7r — asin	
G

√ 	 atan (E, F),
E2 + F

2 —

since sin (a + atan (E, F)) = sin (7r — a — atan (E, F)). These two angles are the
boundaries of the region. Since E, F, and G are all functions of E, we have two
pairs of a1 and a2 or four total angles. In specific cases, we may have fewer unique� �
angles, for instance when 

EG	
> 1 or when the regions are adjacent (i.e., two

a ’s are equal).
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7.2 Regions for Encounter Geometry

We intuitively know that if the mid-angle of a region produces a conflict within Tred

then all other angles in that region (between the boundary angles) will also produce
conflicts within Tred in the encounter geometry case. We need to prove this formally.
In other words, we seek a theorem of the form:

Theorem 7.2 (MidAngle).

a1 < am < a2 AND

am = atan(vm) AND

a1 = atan (v1) AND

a2 = atan (v2) AND

a = atan (va) AND

line solution? (s , v1) AND

line solution? (s , v2) AND

11vm 11 = 11v1 11 = 11v2 11 = 11va 11 IMPLIES

horizontal conflict? (s , vm)

⇐⇒

ba : a1 < a < a2 : horizontal conflict? (s , va)

where atan (v ) = atan (vx , vy ).

We have not yet been able to prove this theorem. Therefore, we proceeded with a
more trigonometric approach (similar to the approach in section 7.2. 1) that provides
a rigorous basis for using the mid-angle and which also provides direct inequalities
that delineate the regions.

7.2.1 Regions From Trigonometry

To determine color information for the regions between the boundaries, we de-
velop trigonometric inequalities analogous to (25). We know from theorem hori-
zontal solution (theorem 5.6) that a velocity vector that satisfies

s • v <r (s1 • v) <—s • v

is in horizontal conflict. Now we develop a theorem that relates these inequalities
to serve as a condition for testing an angle a.

Theorem 7.3 (EFG).

s2 —D2 > 0 =⇒

s • v <R (s1 • v) < —s • v

⇐⇒ (E1 sin a + F1 cos a > G1 AND E2 sin a + F2 cos a < G2 )
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where

R = 
'/s2

 D

D2 ,	 E1 = w (Rsue — sy), E2 = w (Rsue + sy ),
w = I Ivo II,	 F1 = —w (Rsy + sue), F2 = w (—Rsy + sue ),
v = (w cos a, w sin a) — vi, G1 = vi • (Rs1 — s), G2 = vi • (Rs1 + s).

Proof. Although this looks complicated, algebraic manipulation after substituting
all definitions proves the result. 	 q

From a prevention band standpoint, we want to know the range of track angles
(range of a) that cause these linear combinations

E1 sin a + F1 cos a > G 1 ,	 (26)

E2 sin a + F2 cos a < G2, (27)

to be true—so we can avoid them. These results are trigonometric and can be solved
without regard to the specific values of E, F, and G developed in theorem 7.3. We
begin with the following theorem which given an angle in a certain 27r range and
the satisfaction of a linear combination, then we know the angle is in a more narrow
range.

Theorem 7.4 (angle limit ge). Assuming E2 + F2 > G2 and some integer i,

27ri— 
2 

<x< 27r(i + 1) — 
2 

AND

Esin (x — atan (E, F)) + Fcos (x — atan (E, F)) > G

⇐⇒
27ri + narrow (E, F, G, — 1) < x < 27ri + narrow (E, F, G, 1)

where

^
narrow (E F, G E) = —E as in	

G
	 + —(C + 1)

E2 + F2	 2
where, E = 1 or e = — 1.

Proof. Forward implication case: From the linear combination theorem (see ap-
pendix C), we get

Esin (x—atan (E, F)) + Fcos (x — atan (E, F))
p

= E2 + F2 sin (x — atan (E, F) + atan(E, F))
p

= E2 + F2 sin (x ) .

Then we can follow with this derivation
p

E2 + F2 sin (x) > G,
G

sin (x) > √E2 + F2 ,

^
asin (sin (x)) >	

G
asin √ 	 .E2 + F2
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At this point we have two possibilities, depending on where the angle x — 27ri falls
in a range of values. If — π

2 < x — 27ri < π2 then, asin (sin (x)) = x — 27ri. So,

^

^
x — 27ri > asin	 G,

E2 + F2

x > asin
G

√ 	 + 27ri,
E2 + F2

	

x > narrow (E, F, G, — 1) + 27ri,	 (28)

or if π2 < x — 27ri < 3π
2 , then asin (sin (x)) = 7r — (x — 27ri). So,

— (x — 27ri)
^

7r > asin	 G,
E2 + F2

— 27ri) >
^

—(x asin	
G

√ 	 7r,
E2 + F2 —

— 27ri < —asin	
G

+ 7r,
^

x	
E2 + F2

x — 27ri < narrow (E, F, G, 1),

x < narrow (E, F, G, 1) + 27ri.	 (29)

With these two conditions (28) and (29), the forward implication is proven.
Backward implication case: two standard trigonometric results state that

— 2 < a, b < 2 IMPLIES sin (a) > sin (b) ⇐⇒ a > b,	 (30)

7r
2 

< a, b < 
37r
2 

IMPLIES sin (a) < sin (b) ⇐⇒ a > b.	 (31)

By combining these two results with the antecedent of the backward implication—
narrow (E, F, G, — 1) < x — 27ri and x — 27ri < narrow (E, F, G, 1)—we can state

sin (x — 27ri) > sin (narrow (E, F, G, — 1)),

sin (x — 27ri) > sin (narrow (E, F, G, 1)).

Depending on the value of x, the preconditions of only one of (30) or (31) applies.
However, which one is true doesn’t matter because

sin (narrow(E F G—1))= sin (narrow (E F G 1))=
G

√
E2 + F 2

Note also, that sin (x — 27ri) = sin (x). Thus,

sin (x — 27ri) > sin (narrow (E, F, G, — 1 or 1)),

sin (x) >	
G

√E2 + F2

p
E2 + F2 sin (x) > G.
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We can transform this last formula into

Esin (x — atan (E, F)) + Fcos (x — atan (E, F)) > G,

by the linear combination theorem (see appendix C) and the backward implication
is proved.	 q

By similar reasoning we can prove

Theorem 7.5 (angle limit le). Assuming E2 + F2 > G2 and some integer i,

27ri + 2 < x < 27r (i + 1) + 
2 

AND

Esin (x — atan (E, F)) + Fcos (x — atan (E, F)) < G

⇐⇒
27ri + narrow (E, F, G, 1) < x < 27r (i + 1) + narrow (E, F, G, — 1).

Now we need to collect these results ( angle_limit_ge, angle_limit_le) to
develop a range of angles that will satisfy (26). Since a represents the track angle of
the aircraft, we know that its range is between 0 and 2 7r. If we let x = a+atan (E, F),
then the precondition of angle_limit_ge changes to

27ri — 2 — atan (E, F) < a < 27r(i + 1) — 
2 — 

atan (E, F),

for some value of i. Since the range of atan (E, F) is also between 0 and 27r, this
precondition can be satisfied over the full range of a for three values of i: 0, 1, and
2. With these three values of i and using angle_limit_ge, we get three ranges of a

narrow (E, F, G, — 1) — atan(E, F) < a < narrow (E, F, G, 1) — atan (E, F),

27r + narrow (E, F, G, — 1) — atan(E, F) < a < 27r + narrow (E, F, G, 1) — atan (E, F),

47r + narrow (E, F, G, — 1) — atan(E, F) < a < 47r + narrow (E, F, G, 1) — atan (E, F ).

The last condition is met trivially, since a cannot be greater than 2 7r. Eliminating
this conditions yields the ranges

a > narrow (E, F, G, — 1) — atan (E, F),	 (32)

a < narrow (E, F, G, 1) — atan (E, F),

a > 27r + narrow (E, F, G, — 1) — atan (E, F),	 (33)

a < 27r + narrow (E, F, G, 1) — atan (E, F),

a > 47r + narrow (E, F, G, — 1) — atan (E, F),	 (34)

a < 27r.

Thus if a particular angle is within any of these ranges, then we know that the linear
combination formula is satisfied at that angle.
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Using a similar development, the precondition to angle-limit-le

27ri + 
2 — 

atan (E, F) < a < 27r (i + 1) + 
2 — 

atan (E, F)

can cover the entire 0 to 27r range of a if i is -1, 0, and 1. From the angle-limit-le
theorem, these three values of i yield the following three ranges of a

a > 0	 (35)

a < narrow (E, F, G, — 1) — atan (E, F),

a > narrow (E, F, G, 1) — atan (E, F),	 (36)

a < 27r + narrow (E, F, G, — 1) — atan (E, F),

a > 27r + narrow (E, F, G, 1) — atan (E, F),	 (37)

a < 47r + narrow (E, F, G, — 1) — atan (E, F),

which will ensure the linear combination is satisfied.
To summarize all these results, if an angle a satisfies one condition among (32),

(33), or (34) and it also satisfies one condition from (35), (36), or (37), then we
know that both theorems angle-limit-ge and angle-limit-le are satisfied, hence
theorem 7.3 is satisfied, and thus we know that this angle results in a conflict in the
horizontal dimension (theorem 5.6).

A few comments should be made about these ranges of angles. First, it is
not necessarily the case that all three conditions are defined. For some values of
atan (E, F), a condition may be unsatisfiable for any value of a in the range 0 to 27r.
Also, these conditions include an “equal to” and are not a strict < or > relation. The
“equal to” parts of these conditions exactly correspond to the boundaries developed
in section 7.1.3 and thus can be ignored. Finally, one may wonder why three ranges
of a are provided with these conditions when figure 17 and the surrounding text
states that only two regions are possible. This is only an apparent problem. The
discrepancy comes from forcing the angle a in the range 0 .. 27r. A prevention region
could begin near 27r and “wrap around” to angles larger than 0. Thus two contiguous
regions could span all three conditions.

7.2.2 Mid-Angle Approach Revisited

From the previous section we know that

horizontal conflict? (s , va)

⇐⇒

27ri — 2 — atan (E, F) < a < 27r(i + 1) — 
2 — 

atan (E, F)

Consider the function representing the separation distance between the two air-
craft minus the diameter of the protected zone. This function is closely related to
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horizontal conflict?. We claim, but have not yet proven, that this function
is continuous. With this assumption, we can apply the following lemma to this
function.

Lemma 7.6 (zeroslem). If f is continuous on the open interval (x l , x.) and
f (xl) = 0, f (x. ) = 0 and there are no other zeros between xl and x. , then f is
either positive at every point in the interval or negative everywhere in the interval.

The zeros of f satisfy line_solution?. By the above lemma, all angles between
the zeros will all share the same conflict status (either red or green). Therefore, any
angle between them (for our purposes, the mid-angle) can be used to determine how
the region should be colored. We will use the mid-angle as a representative angle in
following section.

7.3 Lookahead Time Analysis

In section 7.2, we developed solution techniques for prevention bands considering
only the encounter geometry; now we consider ways to ignore those aircraft that are
“too far” away. As described in section 3.2, a protected zone that cannot be reached
within the lookahead time can be ignored. When all points of a protected zone
may be reached within the lookahead time, then the solutions from the encounter
geometry calculations may be used without modification (see section 7.1.1). It is only
when the protected zone intersects the lookahead time that a special solution must
be found, which is the purpose of this section. We will examine several approaches
to solve this problem.

Each of these approaches uses a conflict probe to determine whether an angle is
in conflict or not. One question is whether a 3-dimensional conflict problem (CD3D,
see appendix A) should be used or if a strictly horizontal, 2-dimensional probe should
be used instead. This question cannot be answered formally, but rather is based on
human factors knowledge. Would a pilot, looking at a horizontal display, expect that
separation must occur only in the horizontal dimension? If so, then a 2-dimensional
probe is preferred. We will not pursue this question any further, but for convenience
of presentation we will use CD3D from now on.

7.3.1 Conservative Boundary Approach

The easiest way to handle the case where only part of the protected zone is within
the lookahead period is to be conservative. We begin with a region that creates
a conflict when considering only the encounter geometry (see section 7.2.2). Next
we find the time when the ownship will reach the tangent point (represented by Θ,
as defined in (4) and 5) at each of the boundaries for this region. If either time is
within the lookahead time, then the whole region is prevented (i.e., painted red).

The advantage of this approach is its simplicity—especially in terms of analysis;
the disadvantage is that certain track angles are safe, but are painted red. Other
approaches attempt to avoid losing many of these potential solutions.
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7.3.2 Iterative Approaches

A variation on the full iterative approach (see section 2) is to step through the
angles, starting at the boundaries from the encounter geometry solution and call
CD3D at each angle. If we examine the angles

a1 , a2 , ..., am , ..., an , ..., aend

and we find that am is the first angle with a conflict and angle an is the last angle
with a conflict, then we can conclude that all the angles from am_1 to an+1 should
be prohibited.

A similar, but more efficient approach is instead of using a constant step size
between angles, bisect the angles to find the boundaries of the region. This should
execute in logarithmic time, instead of linear time.

7.3.3 Algebraic Approach

In this section we develop an algebraic method to solve for the points where the
lookahead time, T, intersects the protected zone. We begin by finding the velocity
vectors where the ownship will touch the protected zone at precisely the lookahead
time, as illustrated by figure 20. Depending on the traffic’s velocity, the lookahead

T

Figure 20. Track Angle with Lookahead Time

time may not be symmetric around the axis formed by the position of the two
aircraft. The points where the lookahead time and the protected zone intersect
are combined with the regional boundaries only considering the encounter geometry
(section 7.1.1) and the midpoint between these points is tested with the conflict
probe, CD3D. The result of the conflict probe is used to characterize the entire
region (that is, to paint it red, amber, or green) between these points, as described
in section 7.2.2. We observe that the intersection points between the lookahead time
and the protected zone are precisely those points where the relative position vector
at time T equals the diameter of the protected zone, or formally, when

IIs+ Tv II = D.

An equivalent formula, which is easier to solve is

IIs + Tv I I2 = D2.	 (38)
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Since this equation involves a square, there will be two solutions for v. Thus, to find
the intersection points we must solve for the components of the vector v (i.e., vx

and vy). With these components, the track angles from the ownship velocity vector,
va , can be obtained by (22). The key theorem that enables us to compute these
components is:

Theorem 7.7 (TrackCircle). Let v = va — vZ , II va II = IIvo II, and T be a time.
Then I Is +Tv II2 = D2 , provided vax is the solution of the quadratic equation Av2ax +
Bvax + C = 0 and sign (—2Py Tvay ) = sign (E + 2Px Tvax), where

P = s— TvZ ,	 A =4T2 II P II 2 ,

E = IIP II2 + T2v2
o —D2 ,	 B =4TEPx ,

C = E2 — 4 P 2y T2v2o.

Proof. First, we establish that

IIs + Tv II2 = D2 ^ —2Py Tvay = E +2 Px Tvax .

This follows from substitution and simple algebraic manipulation:

IIs + Tv I I2 = D2 ,
IIs — TvZ + Tva II

2
 = D2 ,

IIP + Tva II 2 = D2 ,

II P II 2 + 2T (P • va) + T
2v2a = D2 ,

0 = II P II 2 + T2v2
o — D2 + 2T (P • va) recall: v2a = v2o,

0= E +2T (P • va),

— 2PyTvay = E + 2PxTvax .	 (39)

Next we square both sides of (39), to obtain

(—2 Py Tvay )2 = (E +2 Px Tvax )2 .

This step requires the condition sign (—2Py Tvay ) = sign (E + 2Px Tvax). Next we
substitute v2ox + v2oy — v2ax for v2ay (i.e., I Iva II = I Ivo II ). This yields

4 P2y T 
2 (v2ox + v2oy — v2ax) = E2 + 4 Px T vaxE + 4 P2x T

2v2ax

Solving for vax we obtain the quadratic with A, B, C as prescribed. 	 q

We use the quadratic in the Track Circle theorem to obtain the two roots vax.

To complete the solution we solve for vay as follows

±
/

v2	 2	 2vay =	 ox + voy — vax.

Now we must decide whether to choose the positive root or the negative root for
vay. To satisfy the preconditions to Track Circle, we choose the sign of vay so that

sign (—2 Py Tvay ) = sign (E + 2 Px Tvax )
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trackcircle (s, vo, vZ, t, irt) =

P=s— tvZ ,

e = P2 + t2v2
o — 

D
2,

a = 4t2P2,

b = 4t e Px,

c = e2 — 4 P 2y t2v2
o

IF discr (a, b, c) > 0 THEN

v/ox = root (a, b, c, irt ) ,

IF sign (—Py ) = sign(e + 2 P/
x , t v/ox) THEN = 1

ELSE = — 1

IF v2
o —

 (v /
ox )2 > 0 THEN

/ — 2	( / )2voy — vo — vox

( /	 /
lvox, voy)

ELSE

(0 , 0)

ENDIF

ELSE

(0 , 0)

ENDIF

Figure 21. Track Circle Function
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is satisfied. In this way, the two roots for vax with their companion vay give us
two potential solutions, say vai and vat . The function in figure 21 provides these
solutions. This function produces a zero vector when the quadratic equation from
the Track Circle theorem cannot be solved. The meaning of a zero vector in these
cases is that the lookahead time boundary and the protected zone do not intersect.
In these cases, only the boundaries from the encounter geometry are used, unless
the protected zone is too far away, then it is ignored all together. The PVS version
of the track-circle algorithm is presented in appendix B.4.

The track-circle function finds both entry points and exit points to the pro-
tected zone. In many situations only one of these solutions are needed. Figure 22
illustrates a situation where only the entry point solution of the track-circle func-

Figure 22. Exit Point from Track Circle

tion is relevant. This figure is in the translated frame of reference where the traffic
aircraft (black dot) is at the origin. The blue dot shows the position of the ownship
and the blue vector its current trajectory. The black circle shows the protected
zone around the traffic. The cyan circle shows all possible relative locations at the
lookahead time, if the ownship were to change only its track angle. The cyan circle
intersects the protected zone in two places, but only the entry point (right-most
intersection) affects the protected bands. The net result is that only one side of the
bands is affected, as illustrated in figure 23. The green-red circle shows what the
prevention bands would look like if the entire region between the tangent points are
colored red. The outer blue-red-amber bands show the impact of using Track Circle.
The amber region shows the part of the bands, which is no longer red because it
falls outside of the finite lookahead time. The algorithm that is presented in this
paper is not harmed by the inclusion of the extra solutions (e.g. the exit point in
the above scenario). However, it is essential that no critical point is omitted. We
have decided to not filter out the extra solutions (and potentially gain a little more
efficiency) in our first version of the algorithm. After a fully formal proof has been
constructed, we may filter out the extraneous solutions.
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Figure 23. Bands with Exit Point

7.3.4 Trigonometric Approach

Like the algebraic approach, the trigonometric approach begins with a lookahead
time T and (38), then proceeds in a similar way to the Track Circle theorem.

IIs + Tv I I2 = D2 ,
IIs — Tvi + Tva II 2 = D2 ,
IIP + Tva II

2
 = D2 ,

P2 + 2T (P • va ) + T2v2a = D2 ,

where P = s — Tvi . Using va = (w cos a,w sin a) and v2
a = w2 , we can write

2T (P • va ) = D2 — IIP II 2 — T2w2 ,

2TP,,w cos a + 2TPyw sin a = D2 — IIP II
2 — T2w2 .

We can now cast this formula in the form of (25),

E cos a + F sin a = G,

where
E =2TP,,w, F =2TPyw, G = D2 —IIP II2 —T2w2 .

We can apply the linear combination theorem (see appendix C, pg. 56) in a manner
similar to section 7.1.3, and get

sin (a + atan (E, F)) = H,

where
H = 

G
√

E2 + F2
.

Thus, if IH I G 1 then in some 2 7r range, we have

a1 = asin (H) — atan (E, F),

a2 = 7r — asin (H) — atan (E, F),

since sin (a + atan (E, F)) = sin (7r — a — atan (E, F)). Just as in the algebraic case
(section 7.3.3), we must evaluate these angles to ensure they yield entry points at
the lookahead time.
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7.4 Vertical Considerations

Similar to section 6.3, we have ignored the impact of the aircraft’s vertical speed.
If the aircraft are in conflict horizontally but not vertically for a particular track
angle, the prevention band should be green at that angle. Only if there is both
horizontal and vertical conflict should that track angle be prevented (i.e., painted
red). We can use (19) and (20) to find the entry time and exit times into the vertical
protected zone. To avoid unnecessarily prohibiting angles, we must ensure that all
track angles that occur before the tentry are allowed. Furthermore, if texit is before
the time to reach the tangent point, then all track angles between these times should
be allowed. The track angle that corresponds to these times may be found using the
Track Circle Theorem (theorem 7.7) and track_circle function in figure 21 (see
also algorithm trk_circle, presented in appendix B.4). The parameter T of the
theorem is instantiated with tentry/exit.

7.5 Sketch of a Track Angle Algorithm

The idea of the algorithm is to find the critical track angles from the encounter
geometry, the lookahead time, and the vertical considerations. Then sort this list
of angles and use the conflict probe (CD3D, see appendix A) at the angle between
each of the critical angles to characterize the region (i.e., determine which color
the region should be painted: green, amber, or red). These critical vectors may be
computed as

Rmm = track line (s, Vo, Vi, — 1, — 1),

Rmp = trackline (s, Vo, Vi, — 1, +1),

Rpm = trackline (s, Vo, Vi, +1, — 1),

Rpp = trackline (s, Vo, Vi, +1, +1),

Crm = trackcircle (s, Vo, Vi, Tred, — 1),

Crp = track circle (s, Vo, Vi, Tred, +1),

Cam = trackcircle (s, Vo, Vi, Tamber, —1),

Cap = track circle (s, Vo, Vi, Tamber, +1),

Cem = track circle (s, Vo, Vi, tentry, —1),

Cep = track circle(s,Vo , Vi, tentry , +1) ,

Cxm = track circle (s, Vo, Vi, texit, —1),

Cxp = track circle (s,Vo , Vi , texit , +1) .

Some of these vectors may be zero vectors in which case they are ignored. Then
the track angles are found using the atan function. Finally, to provide appropriate
bounding, the angles 0 and 2π must be added.

We do not offer a proof of correctness of this algorithm in this paper. This will
be pursued in future work.
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8 Conclusions

The mathematics underlying conflict prevention systems is more subtle than ex-
pected. A direct approach (for the bands of track angles) easily carries one into
the domain of fourth-order polynomial equations in sinα. In this paper, we have
elaborated several different mathematical approaches to find regions of prevention
bands. These approaches roughly fall into three categories: iterative, algebraic, and
trigonometric. The mathematical development divides the problem into encounter
geometry considerations, which incorporate conflicts from all aircraft, and looka-
head time considerations, which filter conflicts based on their nearness (in time) to
the ownship. Since the lookahead time is parametrized as T, the same mathemati-
cal development can be used to examine at immediate warnings (colored red), and
near-term warnings (colored amber).

Using this strong mathematical basis, we intend to formally verify algorithms to
implement these mathematical formulas. Initial algorithms have been sketched out,
but have not been verified. In future work we will select from the methods provided
in this paper to develop an efficient algorithm for the generation of prevention bands.
At this point we favor the Q-theory algebraic approach because we see this as the
most efficient approach and the most mathematically succinct. In addition, we
expect the formal proofs of the algorithm will not be overly difficult. From an
implementation standpoint, an iterative method may be preferred; however, as we
mentioned earlier, simple iterative solutions such as presented in section 2 have
both correctness and completeness issues. Due to safety concerns the correctness
issues must be addressed and for efficiency reasons the completeness issues must be
evaluated to determine their impact.

The non-iterative approaches set forth in this paper are limited to cases where
only two aircraft are involved. As alluded to in section 3, an algorithm is needed
to merge the regions of angles from each traffic aircraft into a single collection
of conflict prevention information. Future work involves specifying, verifying, and
implementing this algorithm.

Beyond these developments, we also intend to use the mathematics developed
in this paper as a foundation for evaluating the traffic complexity and to develop
techniques for down-selecting solutions from conflict detection and resolution algo-
rithms, which produce multiple conflict resolutions.
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Appendix A

Conflict Detection in 3D Space: CD3D

This appendix describes a formally verified three dimensional conflict detection
algorithm called CD3D. The algorithm works on a pair of aircraft: the ownship and
a single traffic aircraft. By methodically calling this function for each traffic aircraft
and combining the outputs, this algorithm may be used as the basis of a conflict
probe. CD3D returns TRUE if and only if there is a time t less than the lookahead
time T, where there is both vertical and horizontal loss of separation. To estimate
future states of the aircraft, this algorithm performs a linear extrapolation of state
information (position and velocity). The algorithm is decomposed into two cases:

• vz = 0, i.e., no vertical speed

• vz =6 0

In the first case, the problem is essentially 2-dimensional. The second case is more
difficult. We will develop some preliminary lemmas before we undertake these two
cases.

A.1 Two Dimensional Preliminaries

The mathematics underlying horizontal 2D conflict detection is the intersection of
the ownship’s trajectory with the protected zone (a circle). As mentioned above,
this problem is equivalent to finding if there is a time, t, where the trajectory is
within the protected zone. A quadratic equation to find this time is

t2V2 +2(S · V ) t + S2 — D2 =0,

with
a = V2, b = S · V, c = S2 —D2 .

This equation is the same as (3) and the derivation of this equation is presented
in section 4.1. The roots of this equation give us the exit and entry times into the
protected zone. We repeat (4) and (5), which represent these times:

O_ = 
—b — 

√
d- 

O+ = 
—b +

a,a

where d is the discriminant and equals b2 — ac. The following expanded form of the
discriminant is used by CD3D:

d = (S · V) 2 + V2 (S2 — D2 )

=(sXvX + syvy )2 + V 2 D 2 — (v2
X + v2

y ) (s2
X
 + s2y)

=2 (sX syvXvy ) + V2D2 — (s2
X v2

y + v 2X s2y ) .
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This equation is equivalent to the form presented in (9) and the further development
of this equation is not necessary for the conflict detection problem. The conflict
resolution problem—represented by the development after (9)—attempts to find
the velocity vector v, where in the conflict detection problem, the vector v is known
and is equal to vo — vi .

If the discriminant is less than or equal to zero, then the ownship’s trajectory
does not intersect the horizontal protected zone and there is no conflict. Thus, a
condition for conflict detection is that d > 0.

We now proceed to develop the logic of CD3D for two cases: if vz = 0 and if
vz =6 0.

A.2 When vz = 0

When vz = 0, CD3D reduces to a 2-dimensional problem. For CD3D to return TRUE,
first we must ensure that we have a conflict in the vertical dimension, formally, that

—H<sz <H.

Next, we must ensure that d > 0. Finally, we determine that the lookahead time,
T, is after the entrance time into the protected zone and that the exit time is not in
the past. Formally, these conditions are O _ < T and O+ > 0. We claim that these
conditions are satisfied by the following conditions:

(D2 > s2 OR b ≤ 0) AND (d> (aT + b) 2 OR (aT + b) > 0) .

This relationship is proved by the lemmas A.1 and A.3. The lemmas are stated with
a generic time t, because they will be used slightly differently in the next section.

Lemma A.1 (theta1 lt t). If the discriminant is non-negative, then

O_ < t ⇐⇒ d > (at + b) 2 OR at + b > 0.

Proof.

O_ < t ⇐⇒
—b—

√
d- <t ⇐⇒

a
—

√
d- <at + b ⇐⇒

d > (at + b) 2 OR at + b > 0.

To resolve the second condition, we need to determine if O+ > 0. The proof of this
result requires the proof of the next lemma.
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Lemma A.2 (theta2gtt). If the discriminant is non-negative, then

d > (at + b) 2 OR at + b < 0 ,#^ O+ > t.

Proof.

O+ >t ,#^

—b +
√

d- >t ,#^
a√

d> at + b ,#^

d > (at + b) 2 OR at + b < 0.

Lemma A.3 (theta2gt0). If the discriminant is non-negative, then

D2 > s2 OR b< 0 ,#^ O+ > 0.

Proof. Using lemma theta2_gt_t with t = 0, we have

d > b 2 OR b< 0 ,#^ O+ > 0.

But the first condition d > b2 can only occur when there is a loss of separation, i.e.,
s2 < D2 :

d > b2 ,#^

b2 — ac > b2 ,#^

—ac> 0 ,#^

v2 
[
s2 — D2] < 0 ,#^

s2 — D2 < 0 ,#^	 since v2 > 0,

2 < D2s	 .

A.3 When vz =6 0

If vz =6 0, then we must deal with both the two dimensional considerations in the
previous section and we must also deal with the times when loss of separation occurs
vertically. We repeat (19) and (20) that give the times to enter and exit the vertical
protected zone:

— sign (vz )H — sz

	

tentry =	 ,
vz

sign (vz )H — sz

	

texit =	 .
vz
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If either of these times is negative, then this time is undefined; for instance, when an
aircraft is below the protected zone and its vertical speed is negative. Furthermore,
since H > 0, tentry < texit.

This problem breaks into two cases: a special case is when the ground speed is
zero (vx = 0 and vy = 0) and the general case when the ground speed is non-zero
(vx =6 0 or vy =6 0). Recognize that the speed here is the relative ground speed
between the two aircraft, so the special case is physically realistic. We handle the
special case first.

A.3.1 When vx = 0 and vy = 0

In this case there can only be a conflict if there is already a loss of separation
horizontally, so the test s2 < D2 is performed. If there is also a vertical loss of
separation (i.e., —H < sz AND sz < H) then there is a loss of separation, which—
by definition—is a conflict. Otherwise, the vertical velocity will cause a conflict
within the lookahead time, provided

0 < texit AND tentry < T.

By expanding the definition of tentry, and performing algebraic manipulations, we
have the conditions:

vz > 0 AND sz < 0 AND — H < sz + Tvz OR

vz < 0 AND sz > 0 AND H > sz + Tvz .

A.3.2 When vx =6 0 or vy =6 0

The general case involves all four key times associated with detection:

• Θ_ , the time to enter protected zone horizontally

• Θ+ , the time to leave protected zone horizontally

• tentry, the time to enter protected zone vertically

• texit, the time to leave protected zone vertically

If these times are properly ordered then there is a conflict. First we must ensure
that both a horizontal and vertical loss of separation occurs within the lookahead
time, that is:

0 < texit AND tentry < T,

0 < Θ+ AND Θ_ < T.

Finally, we must ensure that the two intervals of time overlap. This can be ensured
with

Θ_ < texit AND tentry < Θ+ .

To summarized these six conditions
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Condition is equivalent to by
tentry < T

texit > 0
O+ > 0 D > s x + sy OR b < 0 lemma theta2_gt_0
T > O_ d > (aT + b)	 OR aT + b > 0 lemma theta1_lt_t
texit > O_ d > (at + b) 	 OR at + b > 0 lemma theta1_lt_t
tentry < O+ d > (at1 + b)	 OR at1 + b < 0 lemma theta2_gt_t

These are precisely the conditions that are checked in CD3D when vz =6 0.

A.4 CD3D Algorithm

The CD3D algorithm, expressed in the PVS specification language, is shown in
figure A1.
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s VAR Vect3 %% Relative position of the ownship wrt traffic

v VAR Vect3 %% Relative velocity of the ownship wrt traffic
D VAR posreal %% Minimum horizontal separation

H VAR posreal %% Minimum vertical separation

T VAR posreal %% Lookahead time

CD3D(s,v,D,H,T)	 bool =
LET (sx,sy,sz) = s,

(vx,vy,vz) = v IN

IF vx=0 AND vy=0 AND sx*sx+sy*sy < D*D THEN %% No horizontal movement

(-H < sz AND sz < H) OR	 %% Already in conflict

(vz > 0 AND sz < 0 AND -H < T*vz + sz) OR %% Vert. conflict in future

(vz < 0 AND sz > 0 AND H > T*vz + sz)
ELSE

LET d = 2*sx*vx*sy*vy + D*D*(vx*vx + vy*vy) -

(sx*sx*vy*vy + sy*sy*vx*vx) IN
IF d > 0 THEN

LET a = vx*vx + vy*vy,
b = sx*vx + sy*vy IN

%% theta1 = (-b - sqrt(d))/a, first intersection with D

%% theta2 = (-b + sqrt(d))/a, second intersection with D

IF vz = 0 THEN %% Horizontal movement only

-H < sz AND sz < H AND
(D*D > sx*sx + sy*sy OR b <= 0) AND %% theta2 > 0

(d > (a*T+b) * (a*T+b) OR a*T+b >= 0) %% theta1 < T

ELSE %% General case
LET t1 = (-sign(vz)*H-sz)/vz,

t2 = (sign(vz)*H-sz)/vz IN

%% t1 < t2

(d > (a*t2+b) * (a*t2+b) OR a*t2+b >= 0) AND %% theta1 < t2
(d > (a*t1+b) * (a*t1+b) OR a*t1+b <= 0) AND %% t1 < theta2

%% max(theta1,t1) < min(theta2,t2)

(D*D > sx*sx + sy*sy OR b <= 0) 	 AND %% theta2 > 0

t2 > 0	 AND %% min(theta2,t2) > 0

(d > (a*T+b) * (a*T+b) OR a*T+b >= 0)	 AND %% theta1 < T

t1 < T	 %% max(theta1,t1) < T

ENDIF

ELSE FALSE

ENDIF
ENDIF

Figure A1. CD3D Algorithm
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Appendix B

Horizontal Algorithms

In this section the PVS versions of the horizontal algorithms are provided, These
algorithms are abstract and are defined over the reals. We have not considered the
issues associated with the finite precision provided by a floating point implementa-
tions, which are used in conventional programming languages such as C++ or Java.
The algorithms are defined as functions with a highly constrained return type. In
other words, the return types convey the key properties of the function. These
return types rely on a few additional predicates:

v1,v2	 : VAR Vect2

gs_only?(v1)(v2) : bool = EXISTS (l: posreal): v2 = l*v1

trk_only?(v1)(v2) : bool = norm(v2) = norm(v1)

nz_vect2?(v: Vect2): bool = v /= zero

The following types are also used:

Sp_vect2 : TYPE = {s: Vect2 I sqv(s) >= sq(D)}

Ss_vect2 : TYPE = {s: Vect2 I sqv(s) > sq(D)}

Nz_vect2 : TYPE = {v: Vect2 I v /= zero}

Nzv2_vect3 : TYPE = {v I nz_vect2?(v)}

In addition to these definitions, the algorithms rely on utility functions providing
vector operations and the roots of quadratic equations, see sections B.5 and B.6.

B.1 Ground Speed Line Algorithm

The ground speed line algorithm is defined as follows in PVS:

sp	 : VAR Sp_vect2

ss	 : VAR Ss_vect2

eps	 : VAR Sign

vo,vi,v,

nvo,nvi : VAR Vect2

nzv	 : VAR Nz_vect2

alpha(ss) : {x: posreal I x < 1} = sq(D)/sqv(ss)

beta(ss) : nnreal = D*sqrt(sqv(ss)-sq(D))/sqv(ss)

Qx(ss,eps) : MACRO real = alpha(ss)*ss‘x + eps*beta(ss)*ss‘y

Qy(ss,eps) : MACRO real = alpha(ss)*ss‘y - eps*beta(ss)*ss‘x
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Q(ss,eps)	 Vect2 = (Qx(ss,eps),Qy(ss,eps))

Qs(ss,eps)	 Vect2 =

Q(ss,eps)-ss

tangent_line(sp,eps) Nz_vect2 =

IF on_D?(sp) THEN

eps*perpR(sp)

ELSE

Qs(sp,eps)

ENDIF

gs_only_line(v,vo,vi) {k real,nvo Vect2 I nz_vect2?(nvo) =>

gs_only?(vo)(nvo) AND

k*v = nvo-vi} =

IF det(vo,v) /= 0 THEN

LET k = det(vi,vo)/det(vo,v),

l = det(vi,v)/det(vo,v) IN

IF l > 0 THEN

(k,l*vo)

ELSE

(0,zero)

ENDIF

ELSE

(0,zero)

ENDIF

gs_line_eps(sp,vo,vi,eps) {nvo I nz_vect2?(nvo) =>

gs_only?(vo)(nvo)} =

LET (k,nvo) = gs_only_line(tangent_line(sp,eps),vo,vi) IN

IF nz_vect2?(nvo) AND k >= 0 THEN

nvo

ELSE

zero

ENDIF

B.2 Ground Speed Circle Algorithm

The ground speed circle algorithm is defined as follows in PVS:

s,nvo VAR Vect3

vo,vi VAR Nzv2_vect3
dir,irt VAR Sign

vnzo VAR Nz_vect2

d,t VAR posreal
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gs_only_circle(s,vnzo,vi,d,t,irt): {nvo I nz_vect2?(nvo) =>

gs_only?(vnzo)(nvo) AND
sqv(s+t*(nvo-vi)) = sq(d)} =

LET w = s-t*vi,
a = sq(t)*sqv(vnzo),

b = t*(w*vnzo),
c = sqv(w)-sq(d) IN

IF discr2b(a,b,c) >= 0 THEN

LET l = root2b(a,b,c,irt) IN
IF l > 0 THEN

l*vnzo
ELSE

zero
ENDIF

ELSE

zero
ENDIF

B.3 Track Line Algorithm

The track line algorithm is defined as follows in PVS:

sp	 : VAR Sp_vect2

u,vnz,vnzo : VAR Nz_vect2
eps,irt	 : VAR Sign

vo,vi,nvo : VAR Vect2

trk_only_line(vnz,vo,vi,irt): {k:real,nvo:Vect2 I

nz_vect2?(nvo) => trk_only?(vo)(nvo) AND
k*vnz = nvo-vi} =

LET a = sqv(vnz),

b = vnz*vi,
c = sqv(vi) - sqv(vo) IN

IF discr2b(a,b,c) >= 0 THEN
LET k = root2b(a,b,c,irt) IN
(k,k*vnz+vi)

ELSE

(0,zero)

ENDIF

trk_line_eps_irt(sp,vo,vi,eps,irt): {nvo:Vect2 I nz_vect2?(nvo) =>

trk_only?(vo)(nvo)} =

LET (k,nvo) = trk_only_line(tangent_line(sp,eps),vo,vi,irt) IN
IF nz_vect2?(nvo) AND k >= 0 THEN

nvo
ELSE

zero
ENDIF
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B.4 Track Circle Algorithm

The track circle algorithm is defined as follows in PVS:

s,nvo	 : VAR Vect3

vo,vi	 : VAR Nzv2_vect3
dir,irt : VAR Sign

t	 : VAR posreal

horizontal_dir?(s: Vect2, v: Vect2,eps) : MACRO bool =

eps*(s*v) >= 0

vertical_dir?(sz: real,vz: real, eps) : MACRO bool =

eps*(sz*vz) >= 0

trk_circle(s,vo,vi,t,irt,eps): {nvo | nz_vect2?(nvo) =>

trk_only?(vo)(nvo)} =
LET P = s - t*vi,

e = sqv(P) + sq(t)*sqv(vo) - sq(D),

a = 4*sq(t)*sqv(P),

b = 4*t*e*P‘x,

c = sq(e) - 4*sq(P‘y)*sq(t)*sqv(vo) IN

IF solvable?(a,b,c) THEN
LET nvox = solution(a,b,c,irt),

sgny = IF sign(-P‘y) = sign(e+2*P‘x*t*nvox) THEN 1 ELSE -1 ENDIF

IN

IF sqv(vo) - sq(nvox) > 0 THEN
LET nvoy = sgny*sqrt(sqv(vo)-sq(nvox)) IN

(nvox,nvoy)
ELSE

zero
ENDIF

ELSE

zero %% zero indicates no solution
ENDIF

B.5 Vectors

The NASA PVS library B1 contains two theories that define 2D vectors and 3D
vectors, named vectors_2D and vectors_3D. These theories introduce the following
record types.

Vect2: TYPE = [# x, y: real #]

Vect3: TYPE = [# x, y, z: real #]

Given the following variable declarations

v: VAR Vect2

w: VAR Vect3

1Available at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.
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the components of the vectors v and w are accessed using a ‘ character: v‘x, v‘y,
w‘x, w‘y, and w‘z. The standard operations on vectors are defined: if u and v
are vectors and a is a scalar, u + v, -u, u - v, u * v, and a*v denote addition,
negation, subtraction, dot product, and scalar multiplication, respectively. We also
define

sq(v)	 : nnreal = sq(v‘x) + sq(v‘y)

sqv(v) : nnreal = v*v

norm(v) : nnreal = sqrt(sq(v))

where nnreal is the type of non-negative real numbers. The zero vectors are defined
as follows

zero: Vect2 = (0, 0)

zero: Vect3 = (0, 0, 0)

A vect2D function is provided that creates a 2D vector from a 3D vector by trun-
cation, i.e., throwing away the z-component:

vect2D(v:Vect3): Vect2 = (v‘x,v‘y)

B.6 Roots

The quadratic theory in the reals library defines the following functions

sq(x: real) = x*x

quadratic(a,b,c: real)(x): real = a*sq(x) + b*x + c

discr(a,b,c) : real = sq(b) - 4*a*c

root(a:nonzero_real,b:real,c:real|discr(a,b,c)>=0,eps:Sign):real =

(-b + eps*sqrt(discr(a,b,c)))/(2*a)

discr2b(a,b,c) : real = sq(b) - a*c

root2b(a:nonzero_real,b:real,c:real|discr2b(a,b,c)>=0,eps:Sign):real =

(-b + eps*sqrt(discr2b(a,b,c)))/a
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Appendix C

Linear Combination

A linear combination of sine and cosine is a useful identity used throughout the
trigonometric proofs.

Theorem C.1 (linear combination). A linear combination of sine and cosine
can be expressed with a single sine function, such that

Esin a + Fcos a =pE2 + F2 sin (a + atan (E, F))

Provided that either E or F is not zero—the arctangent function is undefined in this
case. The function atan (E, F) is defined as the arctangent of F/E.

Proof. The proof involves trigonometric reasoning. We proceed by transforming the
right side of the equality into the left side.

p
E2 + F2 sin (a + atan (E, F))

p
E2 + F2 (sin (a) cos (atan (E, F)) + cos (a )sin (atan (E, F)))

Using standard trigonometric identities,
⎛ 	 ⎞

p Fsign (E)

E2 + F2 sin (a) 
sign(E)

q 	 + cos (a)	 E

1 + (E

) 2
	1 + (E

) 2

Then we use algebraic manipulations,
⎛ 	 ⎞

p
sin (a )sign (E) + cos (a ) 

Fsign (E)

E2 + F2	
2	

E

1+ (E

)

⎛ 	 ⎞

p
sin (a )sign (E) + cos (a ) 

Fsign (E)
E2 + F2 	

E2+F2	E

sign (E)E

C	

1

	

sign (E)E sin (a)sign (E) + cos (a) 
Fsign(E)

E	
/I

Esin a + Fcos a

since, (sign (E) ) 2 = 1.
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